forensic gait analysis services
forensic gait analysis services

References

Aqmar MR, Fujihara Y, Makihara Y, Yagi Y. Gait recognition by fluctuations. Computer Vision and Image Understanding. 2014;126:38-52.

 

Atkinson AP, Tunstall ML, Dittrich WH. Evidence for distinct contributions of form and motion information to the recognition of emotions from body gestures. Cognition. 2007;104(1):59-72.

 

Bashir K, Xiang T, Gong S. Gait recognition without subject cooperation. Pattern Recognition Letters. 2010;31(13):2052-60.

 

Birch I, Birch M, Asgeirsdottir N. The identification of individuals by observational gait analysis using closed circuit television footage: comparing the ability and confidence of experienced and non-experienced analysts. Science & Justice. 2019;60(1):79-85.

 

Birch I, Birch M, Rutler L, Brown S, Burgos LR, Otten B, et al. The repeatability and reproducibility of the Sheffield Features of Gait Tool. Science & Justice. 2019;59(5):544-51.

Birch I, Birch T, Bray D. The identification of emotions from gait. Sci Justice. 2016;56(5):351-6.

 

Birch I, Gwinnett C, Walker J. Aiding the interpretation of forensic gait analysis: Development of a features of gait database. Science & Justice. 2016;56(6):426-30.

 

Birch I, Gwinnett C, Walker J. Aiding the interpretation of forensic gait analysis: Development of a features of gait database. Science and justice. 2018;58(1):78-82.

 

Birch I, Raymond L, Christou A, Fernando MA, Harrison N, Paul F. The identification of individuals by observational gait analysis using closed circuit television footage. Sci Justice. 2013;53(3):339-42.

 

Birch I, Vernon W, Burrow G, Walker J. The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage. Sci Justice. 2014;54(2):159-63.

 

Birch I, Vernon W, Walker J, Saxelby J. The development of a tool for assessing the quality of closed circuit camera footage for use in forensic gait analysis. J Forensic Leg Med. 2013;20(7):915-7.

 

Birch I, Vernon W, Walker J, Young M. Terminology and forensic gait analysis. Sci Justice. 2015;55(4):279-84.

 

Borel S, Schneider P, Newman CJ. Video analysis software increases the interrater reliability of video gait assessments in children with cerebral palsy. Gait Posture. 2011;33(4):727-9.

 

Bouchrika I, Goffredo M, Carter J, Nixon M. On using gait in forensic biometrics. Journal of forensic sciences. 2011;56(4):882-9.

 

Buncombe A. Gang leader is unmasked by his bandy-legged gait. The Independent. 2000 July 2000.

 

Caruso EM, Burns ZC, Converse BA. Slow motion increases perceived intent. Proceedings of the National Academy of Sciences. 2016;113(33):9250-5.

 

Chartered Society of Forensic Sciences and College of Podiatry in association with the Forensic Science Regulator. 2019. Code of Practice for Forensic Gait Analysis, Issue 1. Birmingham: The Forensic Science Regulator.

 

Choudhury SD, Tjahjadi T. Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors. Pattern Recognition. 2012;45(9):3414-26.

 

Choudhury SD, Tjahjadi T. Gait recognition based on shape and motion analysis of silhouette contours. Computer Vision and Image Understanding. 2013;117(12):1770-85.

 

Choudhury SD, Tjahjadi T. Robust view-invariant multiscale gait recognition. Pattern Recognition. 2015;48(3):798-811.

 

Clarke TJ, Bradshaw MF, Field DT, Hampson SE, Rose D. The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception. 2005;34(10):1171-80.

 

Connor P, Ross A. Biometric recognition by gait: A survey of modalities and features. Computer Vision and Image Understanding. 2018;167:1-27.

 

Cunado D, Nixon MS, Carter JN. Automatic extraction and description of human gait models for recognition purposes. Computer Vision and Image Understanding. 2003;90(1):1-41.

 

Cutting JE, Kozlowski LT. Recognizing friends by their walk - gait perception without familiarity cues. Bulletin of the Psychonomic Society. 1977;9(5):353-6.

 

DiMaggio JA, Vernon W. Forensic podiatry: principles and methods. New York London: Humana; 2011.

 

Foster JP, Nixon MS, Prügel-Bennett A. Automatic gait recognition using area-based metrics. Pattern Recognition Letters. 2003;24(14):2489-97.

 

Geradts Z, Merlijn M, de Groot G, Bijhold J. Use of gait parameters of persons in video surveillance systems. In: Geradts ZJ, Rudin LI, editors. Investigative Image Processing Ii. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). 47092002. p. 16-24.

 

Gor-García-Fogeda MD, Cano de la Cuerda R, Carratalá Tejada M, Alguacil-Diego IM, Molina-Rueda F. Observational Gait Assessments in People With Neurological Disorders: A Systematic Review. Archives of Physical Medicine and Rehabilitation. 2016;97(1):131-40.

 

Gross MM, Crane EA, Fredrickson BL. Effort-Shape and kinematic assessment of bodily expression of emotion during gait. Human movement science. 2012;31(1):202-21.

 

Guest R, Miguel-Hurtado O, Stevenage S, Black S. Exploring the relationship between stride, stature and hand size for forensic assessment. Journal of forensic and legal medicine. 2017;52:46-55.

 

Hayfron-Acquah JB, Nixon MS, Carter JN. Automatic gait recognition by symmetry analysis. Pattern Recognition Letters. 2003;24(13):2175-83.

 

Hossain MA, Makihara Y, Wang J, Yagi Y. Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control. Pattern Recognition. 2010;43(6):2281-91.

 

Huang PS, Harris CJ, Nixon MS. Recognising humans by gait via parametric canonical space. Artificial Intelligence in Engineering. 1999;13(4):359-66.

 

Iwashita Y, Stoica A, Kurazume R. Gait identification using shadow biometrics. Pattern Recognition Letters. 2012;33(16):2148-55.

 

Jung S-U, Nixon MS. Heel strike detection based on human walking movement for surveillance analysis. Pattern Recognition Letters. 2013;34(8):895-902.

 

Kastaniotis D, Theodorakopoulos I, Theoharatos C, Economou G, Fotopoulos S. A framework for gait-based recognition using Kinect. Pattern Recognition Letters.

 

Keval H, Sasse MA, editors. to catch a thief--you need at least 8 frames per second: the impact of frame rates on user performance in a CCTV detection task. Proceedings of the 16th ACM international conference on Multimedia; 2008: ACM.

 

Kirtley C. Clinical gait analysis: theory and practice. Edinburgh London Oxford: Elsevier Churchill Livingstone; 2006.

 

Krishan K, Kanchan T, DiMaggio JA. Emergence of forensic podiatry—A novel sub-discipline of forensic sciences. Forensic science international. 2015;255:16-27.

 

Kusakunniran W, Wu Q, Zhang J, Li H, editors. Support vector regression for multi-view gait recognition based on local motion feature selection. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on; 2010: IEEE.

 

Kusakunniran W, Wu Q, Zhang J, Li H. Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2012;42(6):1654-68.

 

Larsen PK, Simonsen EB, Lynnerup N. Gait analysis in forensic medicine . J Forensic Sci. 2008;53(5):1149-53.

 

Levine D, Richards J, Whittle MW. Whittle's gait analysis: Elsevier Health Sciences; 2012.

 

Lord SE, Halligan PW, Wade DT. Visual gait analysis: the development of a clinical assessment and scale. Clin Rehabil. 1998;12.

 

Lu J, Zhang E. Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recognition Letters. 2007;28(16):2401-11.

 

Ludwig O, Dillinger S, Marschall F. Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis. Forensic science international. 2016;264:15-23.

 

Lynnerup N, Vedel J. Person identification by gait analysis and photogrammetry. J Forensic Sci. 2005;50(1):112-8.

 

MacLin MK, Downs C, MacLin OH, Caspers HM. The effect of defendant facial expression on mock juror decision-making: The power of remorse. North American Journal of Psychology. 2009;11(2):323-32.

 

Mahfouf Z, Merouani HF, Bouchrika I, Harrati N. Investigating the use of Motion-based Features from Optical Flow for Gait Recognition. Neurocomputing. 2017.

 

Makihara Y, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y, editors. Gait recognition using a view transformation model in the frequency domain. European Conference on Computer Vision; 2006: Springer.

 

Matovski DS, Nixon MS, Mahmoodi S, Carter JN. The effect of time on gait recognition performance. IEEE transactions on information forensics and security. 2012;7(2):543-52.

 

Mayer NH. The use of digital video recording for observational analysis of gait. Physical Medicine and Rehabilitation. 2002;16(2):179.

 

Menant JC, Steele JR, Menz HB, Munro BJ, Lord SR. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait & posture. 2009;29(3):392-7.

 

Montepare JM, Goldstein SB, Clausen A. The identification of emotions from gait information. Journal of Nonverbal Behavior. 1987;11(1):33-42.

 

Naugle KM, Joyner J, Hass CJ, Janelle CM. Emotional influences on locomotor behavior. Journal of biomechanics. 2010;43(16):3099-103.

 

Nirenberg M, Vernon W, Birch I. A review of the historical use and criticisms of gait analysis evidence. Science & Justice. 2018;58(4):292-8.

 

Nixon MS, Carter JN, Shutler JD, Grant MG. New advances in automatic gait recognition. Information Security Technical Report. 2002;7(4):23-35.

 

Rathinam C, Bateman A, Peirson J, Skinner J. Observational gait assessment tools in paediatrics - A systematic review. Gait & Posture. 2014;40(2):279-85.

 

Reel S, Rouse S, Obe WV, Doherty P. Estimation of stature from static and dynamic footprints. Forensic science international. 2012;219(1):283. e1-. e5.

 

Reid S, Held JM, Lawrence S. Reliability and validity of the Shaw gait assessment tool for temporospatial gait assessment in people with hemiparesis. Archives of physical medicine and rehabilitation. 2011;92(7):1060-5.

 

Roy A, Sural S, Mukherjee J. A hierarchical method combining gait and phase of motion with spatiotemporal model for person re-identification. Pattern Recognition Letters. 2012;33(14):1891-901.

 

The Royal Society and the Royal Society of Edinburgh. Forensic gait analysis: a primer for courts. London: The Royal Society; 2017.

 

Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW. The humanid gait challenge problem: Data sets, performance, and analysis. IEEE transactions on pattern analysis and machine intelligence. 2005;27(2):162-77.

 

Seckiner D, Mallett X, Roux C, Meuwly D, Maynard P. Forensic image analysis-CCTV distortion and artefacts. Forensic science international. 2018.

 

Stevenage SV, Nixon MS, Vince K. Visual analysis of gait as a cue to identity. Applied Cognitive Psychology. 1999;13(6):513-26.

 

Sulovská K, Fišerová E, Chvosteková M, Adámek M. Appropriateness of gait analysis for biometrics: Initial study using FDA method. Measurement. 2017;105:1-10.

 

Tao D, Li X, Maybank SJ, Wu X, editors. Human carrying status in visual surveillance. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06); 2006: IEEE.

 

Thies SB, Richardson JK, Ashton-Miller JA. Effects of surface irregularity and lighting on step variability during gait:: A study in healthy young and older women. Gait & posture. 2005;22(1):26-31.

 

Toro B, Nester CJ, Farren PC. Inter-and intraobserver repeatability of the Salford Gait Tool: an observation-based clinical gait assessment tool. Archives of physical medicine and rehabilitation. 2007;88(3):328-32.

 

Toro B, Nester CJ, Farren PC. The development and validity of the Salford Gait Tool: an observation-based clinical gait assessment tool. Archives of physical medicine and rehabilitation. 2007;88(3):321-7.

 

Troje NF. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision. 2002;2(5):371-87.

 

Troje NF, Westhoff C, Lavrov M. Person identification from biological motion: Effects of structural and kinematic cues. Perception & Psychophysics. 2005;67(4):667-75.

 

Tsuji A, Makihara Y, Yagi Y, editors. Silhouette transformation based on walking speed for gait identification. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on; 2010: IEEE.

 

Urtasun R, Fua P, ieee computer s. 3D tracking for gait characterization and recognition. Sixth Ieee International Conference on Automatic Face and Gesture Recognition, Proceedings. 2004:17-22.

 

Vernon W. The development and practice of forensic podiatry. J Clin Forensic Med. 2006;13(6-8):284-7.

 

Viehweger E, Pfund LZ, Hélix M, Rohon M-A, Jacquemier M, Scavarda D, et al. Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability). Annals of physical and rehabilitation medicine. 2010;53(9):535-46.

 

Yam C, Nixon MS, Carter JN. Automated person recognition by walking and running via model-based approaches. Pattern Recognition. 2004;37(5):1057-72.

 

Yang SX, Larsen PK, Alkjaer T, Lynnerup N, Simonsen EB. Influence of velocity on variability in gait kinematics: implications for recognition in forensic science. J Forensic Sci. 2014;59(5):1242-7.

 

Yang SX, Larsen PK, Alkjær T, Simonsen EB, Lynnerup N. Variability and similarity of gait as evaluated by joint angles: implications for forensic gait analysis. J Forensic Sci. 2014;59(2):494-504.

 

Zaki MH, Sayed T. Using automated walking gait analysis for the identification of pedestrian attributes. Transportation research part C: emerging technologies. 2014;48:16-36.

 

Zhang R, Vogler C, Metaxas D. Human gait recognition at sagittal plane. Image and vision computing. 2007;25(3):321-30.

 

Zheng S, Huang K, Tan T, Tao D. A cascade fusion scheme for gait and cumulative foot pressure image recognition. Pattern Recognition. 2012;45(10):3603-10.

Contact us:

FGA Services



enquiries@fgaservices.com 



tel: 07889 835882

 



Print Print | Sitemap
© FGA Services